

Forces

- Intuitively, we experience force as a push
\qquad
\qquad or a pull on an object.
- By definition, force is always the result of
\qquad an interaction of two or more objects.
- No object possesses force on its own.
\qquad
- No object can exert force on itself. \qquad
- Force is a vector quantity measured in Newtons (N). \qquad
\qquad

Free Body Diagrams

- A free body diagram is a technique used to illustrate all the external forces acting on a body.

- The body is represented by a single isolated point (or free body), and only those forces acting on the body from the outside (external forces) are shown.
\qquad
- These forces are the only ones shown, because only external forces acting on the body affect its motion. We can ignore any internal forces within the body.

Newton's $1^{\text {st }}$ Law
(Law of Inertia)

- There exists an inertial frame of reference such that a body at rest remains at rest, or, if in motion, remains in motion at a constant velocity unless acted on by a net \qquad external force.

Mass

- The property of a body to remain at rest or to remain in motion with constant velocity is called inertia.
- Some objects have more inertia than others.
- It is more difficult to change the motion of a large boulder than that of a basketball.
- The inertia of an object is measured by its mass.

Newton's $2^{\text {nd }}$ Law

- The acceleration of a system is directly
\qquad
\qquad proportional to and in the same direction as the net external force acting on the \qquad system, and inversely proportional to its mass.

$$
\vec{a}=\frac{\sum \vec{F}}{m}=\frac{\vec{F}_{n e t}}{m}
$$

This is often written as $F_{n e t}=m a$, with the understanding that both force and acceleration are vectors.

System

- A system is defined by the boundaries of \qquad an object or collection of objects being observed; all forces originating from \qquad outside of the system are considered external forces.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
- When we describe the acceleration of a system, we are modeling the system as a \qquad single point which contains all the mass of that system.
\qquad
- The point we choose for this is the point \qquad about which the system's mass is evenly distributed (center of mass). \qquad
\qquad
\qquad
\qquad

Weight

- Weight is defined as the force of gravity \qquad acting on an object.

$$
\begin{gathered}
w=F_{g}=m g \\
\vec{g}=\frac{\vec{F}_{g}}{m}
\end{gathered}
$$

Newton's 3 ${ }^{\text {rd }}$ Law

- Whenever one body exerts a force on a second body, the first body experiences a force that is equal in magnitude and opposite in direction to the force that it exerts.
- Forces always come in pairs.

Normal Force

- When an object is sitting on a surface the \qquad surface must support the load by exerting an upwards force equal to the weight.
- If the force supporting a load is perpendicular to the surface of contact between the load and its support, this force is defined to be a normal force.
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
- In some cases, the normal force is not equal to the weight. \qquad

Fundamental Forces of Nature

- Strong Nuclear Force
- Holds nucleus of atom together
- Weak Nuclear Force
- Between subatomic particles
- Gravitational Force
- Between all objects
- Electromagnetic Force
- Between charged particles

Friction

- Friction is a force that opposes relative \qquad motion between systems in contact.

- Friction exists between two solid surfaces because even the smoothest looking surface is quite rough on a microscopic and atomic scale.
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
- As we try to slide an object across another surface the atoms of each surface rub against each other impeding the motion and generating heat.

- If two systems are in contact and moving relative to one another, then the friction between them is called kinetic friction.
- When objects are stationary, static friction can act between them; the static friction is usually greater than the kinetic friction between the objects.
- The magnitude of both types of friction is proportional to the normal force.

- Kinetic Friction

- Static Friction
$F_{f}=\mu_{k} F_{n}$

$$
F_{f} \leq \mu_{s} F_{n}
$$

- μ is the coefficient of friction.
- The value of μ depends on the surfaces in contact with each other.

System	$\boldsymbol{\mu}_{\boldsymbol{k}}$	$\boldsymbol{\mu}_{\boldsymbol{s}}$
Rubber on dry concrete	0.7	1.0
Rubber on wet concrete	0.5	0.7
Steel on ice	0.02	0.04

$$
\left|\vec{F}_{f}\right| \leq \mu\left|\vec{F}_{n}\right|
$$

Drag Force

- The drag force always opposes the motion of an object as it moves through a fluid.
- The drag force is proportional to some function of the velocity of the object in that fluid.
- This functionality is complicated and depends upon the shape of the object, its size, its velocity, and the fluid it is in.
- When objects fall through the air, gravity pulls down and the air pushes up on the falling object.
- This reduces the net acceleration of the object.
- The drag force due to the air will increase the longer the object falls.

- Eventually, the drag force will equal the force of gravity resulting in a net acceleration of zero.
- The object will continue to fall but will no longer accelerate.

\qquad
- This maximum velocity is referred to as the terminal velocity.

Elastic (Spring) Force

- When a force is applied to a spring the spring stretches by an amount that is proportional to the force.
- This is known as Hooke's Law.

$$
\left|\overrightarrow{\vec{F}}_{s}\right|=k|\vec{x}|
$$

k is the spring constant
designua (Adobe Stock)

